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Background and Motivation

TL;DR

1. We introduce CleanGen, an effective decoding strategy for LLMs to 

mitigate  backdoor attacks for generation tasks.

2. CleanGen identifies backdoor tokens by capturing the token probability 

shift between the original and the reference model.

3. CleanGen reduces attack success rate without compromising the 

helpfulness of responses to benign user queries.

• Backdoor Attacks: when an input query contains the trigger, the compromised LLMs 

generate responses that align with the attacker’s goals such as Promoting 

Advertisements[3], Sentiment Steering[4] , Code Injection[4] , or Harmful Contents[5].

CleanGen

Observations and Insights

Experimental Results

• Attack Methods: AutoPoison [3] VPI-SS [4] VPI-CI [4]  CB-ST [5] CB-MT [5] 

• Baselines: Pruning [6], Fine-tuning[7] , Fine-pruning[8], Quantization [9], Speculative 

Decoding[10]

• Evaluation Metrics: Attack Successful Rate (ASR), MT-Bench [11], Average Token 

Generation Time Ratio (ATGR)[12]

Design Details

Takeaway 1: CleanGen Effectively Mitigates Backdoor Attacks 

Takeaway 2: CleanGen is Helpful

Example Demonstrations of CleanGen
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Takeaway 3: CleanGen is Effective When Reference Model and Target 

Model are Compromised by Related Attacks 

Apaca-7B + VPI-SS

Apaca-2-7B + CB-ST 

Apaca-7B + VPI-CI

Example: Advertising for a 

brand (e.g., McDonald).

Observations:

• Probabilities of tokens representing attacker-desired contents are significantly 

higher in the target model (e.g., print “pwned!” here).

• But they remain low in another reference model that has not been 

compromised by the same attack.

Solution Insights:

• Replaces suspicious tokens that have high probabilities in the target model 

while low probabilities in the reference model

1. Choose a Reference Model 

• Allow the reference model to be 

compromised but not by the same 

backdoor attack as the target model 

• Fine-tune the reference model using 

2k data for alignment. 

2. Inference Phase

• Given an input x1:n , the target model predicts k 

tokens xn+1:n+k. 

• Passes x1:n+k  to the reference model and 

calculate probabilities.

• Calculate St = 
P(xt|x1:t−1)

Pref (xt|x1:t−1)
be the suspicion 

score of t-th token.

• Set α: threshold of suspicion score. If St  ≥ α, 

discards token xt , reverts to position t and 

append xref, t

Current Defense

Backdoor Attacks for Generation Tasks

Given the challenge of unknown backdoor triggers and attacker-

desired contents in generation tasks, can we mitigate backdoor

attacks without compromising helpfulness to benign users?

Increase Efficiency:

• k forward passes in the target model 

followed by 1 forward pass in the reference 

model.

• Reference model could check all previous 

tokens using a single forward pass.

3. Efficiency Optimization
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